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Abstract

In this study, a technique for estimating vertical profiles of precipitation from multifrequency,
multiresolution active and passive microwave observations is investigated using both simulated and
airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM)
satellite multi-frequency active and passive observations. These observations are characterized by
various spatial and sampling resclutions. This makes the retrieval problem mathematically more
difficult and ill-determined because the quality of information decreases with decreasing resolution.

A model that, given refle tivity profiles and a small set of parameters (including the cloud
water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor
properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated
brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure
is used to minimize the differences between simulated and observed brightness temperatures. The
retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth
Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and
reflectivities and airborne observations are convolved at the resolution of the TRMM instruments and
retrievals are performed and analyzed relative to the reference data used in observations’ synthesis. An
illustration of the possible use of the technique in satellite rainfall estimation is presented through an
application to TRMM data.

The study suggests improvements in combined active and passive retrievals even when the
instruments’ resolutions are significantly different. Future work needs to better quantify the retrievals’

performance, especially in connection with satellite applications, and the uncertainty of the models

used in retrieval.



1. Introduction

Past studies demonstrated various ways in which passive microwave information can contribute
to the improvement of airborne and satellite-borne radar precipitation estimates. A straightforward
option to include radiometer infermation in algorithms for precipitation estimation from space-borne
and airborne radar observations, such as those provided by the Tropical Rainfall Measuring Mission
(TRMM) precipitation radar (PR), is the estimation of the Path Integrated Attenuation (PIA) at the
radar’s frequency from radiomet.r observations. Because the PIA affects the radar precipitation
estimates in a twofold way, throu:gh the reflectivity profile corrected for attenuation but also through
the reflectivity-precipitation relationships that are updated as a function of PIA, the accuracy of the
PIA estimation considerably affects the precipitation estimation. Estimates of PIA based exclusively
on the reflectivity profiles are quite uncertain due to variations in the drop size distributions (DSD) and
independent considerations need to be taken into account to reduce the PIA uncertainty to acceptable
levels. Meneghini et al. (2000) used a Surface Reference Technique (SRT) to estimate the PIA, while
Smith et al. (1997) inspired by th.e work of Weinman et al. (1990) derived formulations to estimate the
PIA from 10 GHz radiometer observations. The benefit of using radiometer based estimates of PIA in
radar profiling algorithms has nct been fully investigated, but at least theoreticaily the radar-radiometer
estimates may lead to better results than the SRT estimates alone. Another way of including passive
observations in radar rain profiliag algorithms is by iteratively modifying the radar retrievals as a
function of a small number of parameters (able to provide a large number of possible solutions given a
profile of attenuated reflectivity) until the differences between calculated and observed brightness
temperatures reach a certain minimum. This kind of approach was explored by Grecu and Anagnostou
(2002). Similar, but not fully eq uivalent, approaches were investigated by Schols and Weinman
(1994), Olson et al. (1997), Menzghini et al. (1997), and Marzano et al. (1999).
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One common characteris'ic of most combined approaches is that they were investigated using
airborne data, assuming similar 1esolutions and coincidence for all observations. Other approaches
such as the combined TRMM al;orithm (Haddad et al. 1997) account for the differences in sensors’
resolutions but have not been fully characterized with respect to radar-only retrievals. In particular, the
combined TRMM algorithm uses a priori brightness temperature-attenuation relationships independent
of the vertical variability of the actual profiles being retrieved (Haddad et al. 1997) and, consequently,
might not completely benefit from the information provided by passive observations. This justifies the
investigation of a more general rtrieval technique from passive and active observations at the TRMM
sensors’ resolutions.

The purpose of this paper is to provide such an investigation. The study is based on both cloud
model simulated and airborne data. That is, cloud model produced databases are used to generate
observations similar to satellite observations, in particular TRMM’s, and a combined technique, which
is an extension of that formulated by Grecu and Anagnostou (2002), is used to retrieve precipitation
profiles from active and passive observations. The combined technique is based on radar and
radiometer simulation models ard uses an optimal estimation formulation to minimize the differences
between observations and simulations of brightness temperatures. A more detailed description is given
in the next section. The retrievals are compared to the actual profiles used in the observation synthesis,
and the retrieval performance is assessed based on these comparisons. Similarly, airborne data from
the Fourth Convection and Moisture Experiment (CAMEX-4) are used to generate TRMM-like
observations. The combined technique is applied to these observations and indirect criteria, such as
the agreement between simulated and observed brightness temperatures at the initial airborne
instruments’ resolutions, and the agreement between retrieved and SRT PIAs, are used to analyze the

technique’s performance. The potential use of the technique is illustrated using an application to actual



TRMM observations. This applization is meant to give sOme sense of the technique’s utility in
satellite applications, but significant additional work needs to be done before some definite conclusions
may be drawn.

The paper is organized as follows. The next section describes the mathematical formulation of
the combined technique. Sectior: 3 contains results from a simulation experiment, i.e. the application
of the technique to synthetic obscrvations generated using cloud model data and the analysis of the
retrievals. In Section 4, the technique is applied to airborne data originating from CAMEX-4. The

application to TRMM data is presented in section 5, and conclusions and recommendations for future

work are provided in Section 6.

2. Formulation of the combined retrieval technique

The retrieval technique is an extension of the one formulated by Grecu and Anagnostou (2002).
The basic radar and radiometer rmodeling components are essentially the same, the major difference
being an adaptation of these basic components to be consistent with the characteristics of TRMM’s
sensors. In the earlier work, each precipitation profile could be retrieved independently of other
precipitation profiles. In the cur-ent formulation, given the overlapping of passive sensor footprints, a
simultaneous retrieval of a large number of profiles (encompassing large areas of precipitation) must
be considered. This will becom¢ more evident in subsequent paragraphs.

As remarked by Grecu and Anagnostou (2002), although the most rigorous formulation
requires the quantification and inclusion of all radar observational and modeling uncertainties, a
simplified formulation is preferable because it makes the solution computationally more tractable.
Consequently, we consider for each precipitation profile a small set of parameters that influence the

radar retrieved profiles or the br:ghtness temperature simulations. This set includes the intercept of the



DSD, N, a variable describing the cloud water content, X, and the ratio of snow to graupel content

above the melting layer, x;. There are obviously other variables that influence the radar retrievals and
the radiative transfer calculation:, but their effect is somewhat smaller. Consequently, to make the
problem better posed (with a more specific solution) we choose not to include the less significant
variables in the formulation.

The drop sizes are assumzd to follow a normalized gamma distribution (Testud et al. 2000).
This kind of formulation is flexible and allows a simple parameterization of varability in relationships
between various precipitation-related variables. The cloud water content variable, X, 1s a
proportionality parameter that multiplied by a mean cloud profile provides the vertical distribution of
cloud water content. The ratio of snow to graupel content, denoted X, is introduced to account for the
impact of frozen hydrometeor density on the scattering properties.

Given these variables, i.e. X, ={Nj,x_,x,}, and the reflectivity profiles, we simulate

brightness temperatures at the radar resolution. Then, we convolve the brightness temperatures at the
resolution of the TRMM sensors, and based on the differences between simulations and observations,
we update the values of Xg. The radar 1jetrieval algorithm and the radiative transfer model are fully
described in Grecu and Anagnostou (2002). A bayesian formulation, similar to that in Grecu and
Anagnostou (2002) but extended to account for the space-borne sensor resolution may be derived in

terms of a functional that provid=s an optimal estimation through its minimization:
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In Eq. (1), Tp'is a two dimensional array of co-located brightness temperatures, E is the region

viewed by the instruments, G is the antenna gain function, Tg. is an array of brightness temperatures

~ o~

calculated from radar retrievals, X, is an array of radar retrieved hydrometeor contents, Xy is an

array of Xg vectors and Mxg is «n a priori estimate of )NKR . The variable A under the integral is a
dummy variable indicating an el:mental area in the sampling area E. For example, in the TRMM
retrieval problem, dA is the PR’: footprint. In the third term of F, PTA is the model predicted array of
PIA, PIA, is a surface return based estimate of PIA, while all variables denoted W are covariance
matrices indicating the confidence in observations and simulation models. Details regarding the
methodology of specifying the cvariance matrices and the a priori estimates are given in the next
section.

To determine the set of radar profiles and associated brightness temperatures considered in (1)
in a given meteorological context, two simple rules derived from an optimality principle are used.
These rules are: 1) any two precipitation profiles located in a common passive observation footprint
must be simultaneously retrieved and 2) any two overlapping passive observations must be considered
together in (1) if there is precipitation in the overlapping region. If the simultaneous application of
these two rules leads to a formulation involving too large a number of variables to allow a solution
using the current computational resources, the functional F is separated in two or more sub-functionals
and retrievals are performed for each of them. For example, in TRMM applications we do not perform
retrievals involving more than 500 PR consecutive scans, i.e. 49x500 pixels, but reduce the problem to

sub-problems that satisfy this size requirement.

It may be noted that the functional F in (1) depends only on )~(R because )~(Q , 1.e. the radar-

retrieved hydrometeor contents, can be determined uniquely as a function of reflectivity profiles and



XR . The large-scale optimizaticn problem associated with the minimization of functional F is

addressed using a gradient-based procedure. The minimization procedure and means of efficiently
evaluating the functional gradient are described in Grecu and Anagnostou (2002). In the next section,

we investigate the combined retrieval technique through a simulation-based experiment.

3. Simulation results

In this section, we synthesize TRMM-like observations using cloud-resolving-model (CRM)
simulated data. Retrievals are performed from the synthetic observations and the CRM data are used
as a reference to assess the retrievals’ performance. The cloud data for the simulation experiment is
derived from a simulation of Hurticane Bonnie (August, 1998), performed using the Penn State/NCAR
mesoscale model MMS. MMS5 employs bulk parameterizations, which constitutes a limitation in
exploring the impact of DSDs’ variability on retrievals, but nevertheless is one of the best options,
given that explicit microphysics schemes are extremely intensive from the computational point of
view.

The brightness temperature simulations are performed using a modified Eddington model
(Bauer et al. 1998). That is, the slant-profiles of hydrometeors corresponding to the instrument
pointing vectors are sampled from the CRM 3-D grid, and the Eddington approximation is applied.
Everything else regarding the radiative transfer calculations is the same as in Grecu and Anagnostou

(2002). The brightness temperature calculations are done at the CRM’s resolution (2 km). The DSD
intercept, N , is generated at rardom but assuming the horizontal correlation and typical values
determined by Testud et al. (2000). The high-resolution brightness temperatures are convolved at

TRMM sensors’ resolutions using Gaussian functions consistent with the sensors’ characteristics as

specified in Kummerow et al. (1997). The sampling resolution of TRMM Microwave Imager (TMI) 1s
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also considered in the observation synthesis. The pseudo TMI observations are generated on a grid of
approximately 15 km in the alon track direction and 9 km (4.5 km for the 85GHz observations) in the
across track direction. The precipitation radar (PR) observations are generated consistently with
TRMM PR sampling resolution approximately on a 4.5 km x 4.5 km grid).

The covariance matrices and the a priori estimates, W and Mxg in Eq. (1), are set through a
methodology similar to that of Grecu and Anagnostou (2002). Wxg and Mxg are evaluated directly
from the cloud model simulated data, assuming that the best a priori estimate of Xg is its mean over all
values produced by the cloud model simulations. Variable x. is determined as the first component in
an empirical orthogonal functior (EOF) decomposition. In other words, the cloud water content
profile is represented as a linear combination of orthogonal vertical profiles that are the eigenvectors of
the covariance matrix determined by all cloud water content profiles in the cloud database. The
advantage of such a representation resides in the fact that the first few eigenvalues and their associated
coefficients explain most of the profiles’ vertical variability (in other words a more economical
representation of cloud water profiles is achieved). Variable x, is simply taken as the vertical mean
ratio of snow to graupel content Wer, is set to 4.0 dB? as suggested by the findings of Meneghini et
al. (2000). Matrix Wr is probat:ly subject to the Jargest uncertainties of all covariance matrices. This
is because, in spite of numerous studies carried out to quantify the uncertainties associated with
radiative transfer calculations in precipitating clouds, there are still issues that need to be further
addressed. These include the modeling of the bright band (Olson et al., 2001), the quantification of the
three-dimensional effects on the polarized transfer of radiation (Roberti and Kummerow 1999),
parameterization of the effect of precipitation small-scale variability on calculated brightness
temperatures (Harris and Foufoula-Georgiou, 2000) etc. Unfortunately, from the point of view of

quantifying the uncertainties in radiative transfer calculations in precipitating clouds, the existing



studies are still preliminary. We therefore consider in this experiment only the uncertainties
introduced in radiative transfer c ilculations by various parameterizations used to make the problem
better defined and computationally less intensive. No potentially systematic errors caused by the
bright band model (from Grecu «nd Anagnostou 2002), three-dimensional effects other than those
mitigated by the slant-model, raindrop oblateness, small-scale variability, etc. are considered. Other
errors, resulting from the simplified representation of the vertical variation of cloud water content and
ratio of snow to graupel by just two variables, x. and Xs, are investigated and included in Wr.
Additional uncorrelated, random errors with 0 mean and 1 K standard deviation (Marzano et al. 1999),
accounting for observational uncertainty, are considered in Wr.

The following scenario i considered in the synthetic retrieval experiment. The radar and
radiometer observations are synthesized as described above. PIA estimates, as provided by a surface
reference technique are generated with the addition of errors to the actual PIA’s determined in the
radar observations’ synthesis. The errors are assumed to be spatially correlated with a decorrelation
distance, i.e. the distance beyond which the correlation drops below 0.5, of 30 km. Other decorrelation
distances are investigated as well and the results will be mentioned in subsequent paragraphs. The
errors in surface-return estimates of PIA are likely to be correlated. This is because the surface
reflectivities are correlated and 2 factor that causes an error (like the variation of surface wind speed,
for example) in the estimation of the rain-free surface return at a certain location and further translates
to an error in the PIA estimate i+ likely to manifest itself at adjacent locations as well. The mean PIA
error is 0dB and its standard deviation is 2 dB. Only polarization corrected brightness temperatures
(PCTs, defined as 1.818Ty-0.81 8Ty, where Ty and Ty are the vertically and horizontally polarized
brightness temperatures) are considered in the retrieval. The 21.3 GHz channel constitutes an

exception, because only the vertically polarized brightness temperature is sensed at that frequency, and
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consequently PCT may not be derived. The reason for considering PCT’s is that they are somewhat
less sensitive to uncertainties in ¢urface emissivities than vertically and horizontally polarized
brightness temperatures. The fact that the number of radiometer observations is reduced about two
times when considering PCT’s does not constitute a significant deterioration of the initial information
quality, because the horizontally and vertically polarized brightness temperature are strongly correlated
and the polarization signature, i.c. the difference between the two polarization temperatures, may not
be correctly reproduced by an Eddington model (Roberti and Kummerow, 1999). Random errors, with
0 mean and 2 K standard deviation were added to the synthetic brightness temperature observations to
account for random errors in the radiative transfer calculations.

The retrieval performance, in terms of error histograms for various retrieved variables are given
in Fig. 1. Two sets of curves are presented in this figure. One corresponds to radar-only retrievals
(symbolized with dashed lines), while the other corresponds to combined retrievals. It is apparent in
Fig. 1 that the errors associated with the combined retrievals are smaller than those produced by radar-
only retrievals. The histogram cof PIA errors for radar-only retrievals is bimodal, because for low PIA
values the analytical estimate frem the reflectivity profile is weighed more than the SRT estimate.

This procedure is similar to that employed by the actual TRMM PR algorithm (see Iguchi et al. 2000).
For large PIA values, the analytical estimate weighs little and the solution substantially depends on the
surface return technique. The PIA error is smaller for combined retrievals than for radar-only
retrievals, i.e. the number of retrievals with absolute errors less than 0.5 dB increases, while the

number of retrievals with errors larger than 0.5 dB decreases. It is also apparent from Fig. 1 that the

improvement in PIA estimation translates to improvements in N, and surface rain estimation.

(Parameter dN is defined here a: the ratio of retrieved N, to actual N¢.) In addition to improvements

in the estimation of variables directed related to precipitation, the combined technique also provides
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estimates of the cloud water content, through variable x.. The error histogram of the estimated relative
to the actual X, i.e. the first comnonent in an EOF representation of the cloud water content profile, is
also presented in Fig. 1. For the sake of comparison, we assume that in the absence of radiometer
observations the best estimate of x. is its mean over the whole cloud model database. It may be noted
in Fig.1 that the combined technique si gnificantly improves the estimation of x. (the relative root mean
square error decreases from 100'%, i.e. no skill relative to “climatological” estimates, to about 50%). It
should be mentioned that retrievals with larger number of variables, i.e. more than two, to describe the
cloud water content profiles have been attempted. They have not yielded better results, which suggests
that there is not enough information in the radiometer observations to refine the estimation of cloud
profiles through the consideraticn of additional orthogonal functions.

In Fig.2, a qualitative representation of the retrieved surface rainfall and mean cloud water is
shown. The surface rainfall errcr and the actual cloud water are shown as well. The largest errors in
surface rainfall occur at the boundaries of the retrieval domain, which is expected since the areas close
to boundaries are poorest in radiometric information. That is, the brightness temperatures in those
areas depend on profiles not in tae retrieval domain and are, consequently, not considered in the
retrievals, while the brightness tzmperatures that are considered in the retrieval only weakly depend on
the profiles close to boundaries. This indeterminacy problem does not occur in situations when the
whole precipitation domain is ircluded in the retrieval domain. In general, the rain errors appear to be

less than 20%, which indicates « good performance of the retrieval technique, given that the

precipitation estimation using relationships that do not account for N, ’s variability could lead to

errors as large as 100% (Testud et al. 2000).

The agreement between the retrieved and actual cloud water fields is also fairly good. The

retrieved field appears to be smoother and spatially less variable, which is a consequence of the
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resolution of the instrument. Thit is, the lower-resolution, radiometric observations provide most of
the information in the combined retrieval of cloud water structures.

As mentioned above, oth:r error structures in SRT PIA estimates are considered as well. It
appears that the difference between combined and radar-only retrievals is negligible from the
precipitation point of view when the decorrelation distance of the SRT PIA errors decreases below 15
km. This suggests that the radiometer information is insufficient in such cases, given the low
resolution of the radiometer obscrvations most related to PIA, to augment the information provided by
the surface return technique. However, the estimates of the cloud water content are still significantly
better than climatological estimates (50%-60% errors). Based on this, it may be stated that combined
retrievals are noticeably superior from the precipitation point of view to radar-only retrievals when the
errors of PIA estimates exhibit correlation distances similar to the radiometer’s low-frequency channel
resolution. Also, the combined retrievals are always more complete and consistent with all

observations. The next section is devoted to the application of the combined technique to data

originating from airborne observations.

4. Application to airborne data

In this section, airborne radar and radiometer observations are aggregated at the TRMM
sensors’ resolutions, the retrieval technique is applied to the synthesized data and the retrievals are
analyzed. Airborne data present the advantage that, while being real and providing opportunities for
more conclusive tests, they are ‘ree of some of the complications caused by different resolutions and
sampling strategies specific to real satellite observations. Combined retrievals from active and passive
airborne observations were investigated in various studies in the past. However, their conclusions may

not be directly extrapolated to satellite data because the resolution of observations at frequencies where
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absorption dominates is low and this may potentially affect the quality of information. This justifies
investigations such as the one in this section.

The data originate from the Fourth Convection and Moisture Experiment (CAMEX-4) which
took place in Florida in August - September 2001. In particular, data collected by the ER-2 Doppler
Radar (EDOP) and the Advancel Multichannel Microwave Precipitation Radiometer (AMPR) are
used. Details on these instrumerts may be found in Heymsfield et al. (1996) and Spencer et al. (1994).
Observations from the Airborne Rain Mapping Radar (ARMAR) coincident with AMPR observations
would probably have been more suitable for investigation of the combined technique, given ARMAR’s
similarity to the TRMM PR (Du-den et al. 1994). However, no flight legs containing ARMAR and
AMPR coincident data that are 1ong enough to provide sufficient observations for a meaningful
analysis at the TRMM resolution have been found. Consequently, we resort to EDOP and AMPR
coincident data.

Fig. 3 shows a representution of the data collected by EDOP and AMPR during a flight leg on
September 18, 2001 (Hurricane Erin). Superimposed on the original AMPR observations are the
TRMM like synthesized observations. It may be noted in Fig. 3 that the information provided by the
10 and 19 GHz channels is significantly degraded at TRMM resolution. The high frequency channels
(37 and 85 GHz) provide high-resolution observations, but the relationships between these
observations and precipitation are weaker than those at lower frequencies. The EDOP observations are
re-sampled at PR resolution and used in the retrievals along with the TRMM-like passive observations
synthesized from the AMPR data. The SRT PIAs are not considered as information in the retrievals
for two reasons. First, the PIA ut EDOP’s frequency (9.6 GHz) is si gnificantly lower than that at 13.8
GHz, which is the frequency considered in the previous section and also the TRMM PR’s frequency.

This makes the EDOP’s SRT bzsed estimates of PIA less reliable than TRMM PR’s and their value of
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limited utility for low intensity ruinfall. Second, the SRT PIA estimates may be used independently (at
least for large attenuation profiles) for evaluation of the combined retrievals. Consequently, we choose
to use the SRT PIAs to interpret the realism of the combined retrievals.

Fig. 4 contains a representation of the retrieved brightness temperatures at the initial AMPR
resolution. Results show that the combined formulation allows for the retrieval of brightness
temperatures at resolutions highcr than that of the observations. This is because the high-resolution
radar observations are available. The agreement between the observed brightness temperatures and the
ones retrieved through the comb ned technique demonstrates the consistency of radar and radiometer
observations as well as that of the models used in the retrieval. Some oscillations, which are most
likely the effect of ill conditioning (more independent unknowns than independent observations), are
apparent, especially in areas with low intensity rainfall. When the cloud water content is specified as a
variable for each profile considered in the retrieval, some unrealistic estimates of this variable are
obtained. That is, higher cloud water contents than those expected are retrieved in some low intensity
rain areas, while in other high intensity rainfall areas zero cloud water content is retrieved. This
suggests that the variability in the surface wind speed and the uncertainties in radi ative transfer
modeling might have a larger ef'ect on retrievals than expected based on the synthetic retrieval
experiment. Consequently, a single cloud variable for all profiles is considered in the retrieval.

Presented in Fig. 5 are various retrieved variables as a function of time. These include the PIA,
the ratio of retrieved N to a reference value, namely N, =0.08 cm™, and the vertically integrated

liquid (VIL) content. PIA estimates from the SRT are also presented in the figure. It may be noted
that the retrieved PIAs are in fairly good agreement with the SRT estimates, especially in the areas
characterized by large attenuation. The SRT estimates are determined by considering a single value

(constant for the whole leg) of the surface return in rain free areas. A more flexible and adaptive SRT
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estimation such as that employec in TRMM PR algorithm (Meneghini et al. 2000) is not considered for
EDOP data, given the absence of off-nadir information. The surface return varies significantly as a
function of the surface wind specd, which makes the PIA estimation subject to errors in cases with
strong variations in surface wind speed. For the investigated case, we set the rain free surface return
based on the observations before the 15:55 and after18:26 which correspond to rain free areas. This
leads to an overestimation of SRT PIA near the eye due to increased surface wind speed that causes a
reduction in the surface return. Alternatively, we could set the rain free surface return based on the
EDOP observations in the eye, but this would not lead to overall more accurate SRT estimates. This
dilemma concerning the optimal strategy of determining the rain free surface return illustrates the need
for additional information such s the radiometric observations. Also, the SRT PIA estimates in Fig.5
suggest that there is a spatial correlation in SRT PIA errors (they may be consistently positive or
negative as a function of surface wind speed, which is also a variable that exhibits spatial correlation).
This makes the assumptions concerning the SRT PIA errors considered in the previous section
meaningful. It may be inferred /tom Fig. 5 that the PIA derived by the combined technique is more
realistic that the SRT PIA in areas of low intensity rainfall because it does not associate large
attenuation with low reflectivity profiles.

The retrieved Ny is characterized by large variations that are consistent, at least from the range

point of view, with the results 0~ Testud et al. (2000). It is apparent, though, that in low intensity
rainfall its values tend to be unrealistically high. This tendency is probably a consequence of the fact
that the algorithm attributes differences between predicted and observed brightness temperature mainly
to variations in the drop size distribution and does not account for other factors such as the variability
in the surface emissivity, horizontal variability of cloud water content, etc. But as already mentioned

inclusion of more variables in the formulation would make the problem more ill-posed. Hopefully,
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progress in the understanding and simulation of precipitation processes will allow more realistic

parameterizations and more adaptive retrievals. A positive fact is that the unrealistic, large values of
N; in the eye do not have much impact on the overall rainfall estimation given that the reflectivity

profiles corresponding to these values are characterized by very low reflectivity factors.

Presented also in Fig. 5 it the vertically integrated liquid content (VIL) as function of time.
This variable appears to be stronzly correlated with the PIA and the 10 GHz brightness temperature.
This results from both the PIA and the 10 GHz brightness temperature being sensitive mainly to
absorption (and emission given Kirkchhoff’s law; Stephens 1994) by raindrops in the atmospheric
column sampled by the radar or ~adiometer. The correlation between the PIA and the VIL suggests
that errors in estimating the PIA directly translate to errors in VIL and advocates the use of radiometric
information as means of reducing the uncertainty in PIA estimates and therefore in precipitation
estimates.

To investigate the generlity of the retrieval analysis, a second flight leg on September 23,
2001 (Hurricane Humberto) is considered. The EDOP and AMPR data (both initial and low
resolution) are shown in Fig. 6. Presented in Fig. 7 are the retrieved and observed brightness
temperatures at the initial AMPR resolution. The agreement between retrieved and observed values is

similar to that noted in the previous case. Shown in Fig. 8 are the retrieved PIA, Ny, and VIL. The

retrieved values indicate consistzncy with the conclusions derived from the analysis of the September

10 data. That is, the agreement between retrieved and SRT PIAs is good, especially for large values,

N exhibits a range and variation similar to those noted before, and the VIL is strongly correlated with
the PIA and the 10 GHz brightness temperature. Also, the lower-valued SRT PIA estimates seem to be
affected by variations in the sur‘ace wind speed. Unlike the previous analysis, a quite systematic trend

is apparent in N, values. The N, values tend to decrease with the range from the eye wall, although
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the fluctuations are still large. This trend may be the consequence of increasing predominance of
stratiform processes conducive to larger drops away from the eye wall.
The analysis of the airboine observations suggests the feasibility of the retrieval technique’s

application to real data. Although some artifacts are apparent, such as unrealistic N, estimates in very

low intensity precipitation areas, the technique provides framework for introducing additional

information to mitigate uncertairties in PIA estimates. In the next chapter, an illustration of the

technique’s applicability to TRMM data is provided.

5. Application to TRMM data

The potential of the retricval technique in satellite rain estimation is illustrated by its
application to TRMM data. Several cases were considered, but results from only one case are
presented here, given that no notable differences from case to case were observed. Nevertheless, a
considerably larger number of cuses must be analyzed for a comprehensive assessment of the
technique’s performance in satellite applications. Such an analysis is in progress, and the results will
be reported separately. In this section only the technique’s feasibility and the consistency of its

behavior relative to the results ol previous sections are investigated.

The radar algorithm used in the retrieval is fully consistent with the TRMM PR algorithm. It
uses the same vertical structure characterized by five nodes that describe the hydrometeor phase and
the vertical variability in reflectivity vs. attenuation and reflectivity vs. precipitation relationships

(Iguchi et al. 2000). The rain type classification is also the same used by TRMM PR algorithm. The

TRMM PR algorithm updates the reflectivity-precipitation relationships as a function of a parameter €

defined as (Iguchi et al. 2000)
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(2)

£ =
0.2In(10)B [ o(s)ZF, (s)ds

where PIA. is the imposed (*“final value™) value of PIA, o(s) and { are the multiplicative coefficient
and the exponent in range-dependent attenuation-reflectivity relationships, s 18 the range, 15 is the range
corresponding to the surface and Z(s) is the attenuated reflectivity atrange s. PIA. is determined
based on a bayesian formulation from the Hitschfeld - Bordan PIA, corresponding to an analytical
solution of the radar equation, and the SRT PIA (Iguchi et al. 2000).

In our approach, € is detcrmined iteratively from radiometer observations. Specifically,
g = SN where 8Ny is the ratio of the actual N;, to the reference N, used to derive the

attenuation-reflectivity relationships. The values of € and, consequently, the simulated TMI brightness
temperatures are iteratively adjusted until a minimum of the functional in (1) is attained. Our estimates
differ from the TRMM PR official estimates only in the way € is specified, which facilitates an
objective analysis of the impact of using radiometric information in the TRMM PR algorithm. The
consistency of TRMM PR paraimeterizations with those derived to predict absorption, emission and
scattering properties at TRMM TMTI’s frequencies as a function of hydrometeor contents is achieved
through the use of equivalent normalized gamma DSDs (Ferreira et al. 2001). That is, the normalized
gamma DSDs that would yield the same relationships as those used by the TRMM PR algorithm are

determined and used further to express the scattering property variables as functions of hydrometeor

contents.

The application presentzd in this section is based on data from a TRMM overpass of Hurricane
Bonnie on 22 August 1998. From TMI, only the 10 GHz brightness temperatures are used in the

retrieval. Although strongly correlated with the actual observations, the 19 to 37 GHz simulated
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brightness temperatures appear to be slightly biased. Because the formulation in (1) applies only to

models that do not exhibit systematic errors, we decided to not include the 19 to 37 GHz information
in the retrieval. The nature of the observed bias is under investigation. Also the 10 GHz and 85 GHz
pieces of information are almost complementary, inasmuch as “pure” emission 18 observed at 10GHz

and “pure” scattering is observec at 85GHz. This makes the formulation separable when the 19 to 37

GHz information is not used. Thatis, a retrieval of N (or €) can be performed based on 10 GHz

observations, followed by a retrizval of x; based on 85GHz observations. Here, the retrieval based

only on 10 GHz is presented, given that N is the variable that strongly influences the precipitation

estimates below the melting laycr.

Selected retrieved parameters are presented in Fig. 9. The top left panel of this figure is a
contour plot of the PIA estimated using the TRMM PR algorithm (one of the TRMM 2A25 products).
Shown in the top right panel are the differences between the combined technique PIA and the 2A25
PIA. As described above, the differences result from different € estimates from the present technique
based on radiometric observations. As seen in the panel, the PIA differences between the two
retrievals are not large. They are within the limits of SRT PIAs uncertainties, but nevertheless they
impact the values of the retrievcd hydrometeor contents. Frequency plots of the 2A25 € and the
combined retrieval € are shown in the bottom left panel of Fig. 1. It may be noted that the € values
from the combined technique exhibit larger deviations from 1.00 than the 2A25 values. The 2A25
values seem to be more conser ative, i.e. closer to 1.00. This may be an indication of less information
incorporated by the TRMM PR algorithm, given that this algorithm weighs the SRT PIA estimates as a
function of their reliability, and when the reliability is small the nominal values are highly weighted.

A representation of retrieved VILs vs. 2A25 VILs is given in the bottom right panel of Fig.9. A strong

correlation between the two types of estimates is noted: however, the combined retrieval VILs are
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systematically larger, especially l'or low values below (5 kg/mz). Overall, the combined retrieval
estimates are about 16% larger than the 2A25 estimates. It should be mentioned that the root mean
squared difference (RMSD) between 2A25 PIAs and the SRT PIAs (determined also by the TRMM
PR algorithm) is the same as the RMSD between the combined retrieval PIAs and SRT PIAs.
Therefore, although the combined method is as consistent with the SRT PIA estimates as the TRMM
PR algorithm, it produces results that are systematically different from those of 2A25 algorithm. This
is a consequence of the highly nonlinear relationships among the variables involved in the algorithm,
and suggests that apparently sim-lar retrievals may lead eventually to systematically different results.
Further, it is possible that some of the differences between the official TMI and PR algorithm estimates
may originate in the lack of reliable PIA estimates for low intensity rainfall which may lead to
conservative PR estimates (¢=1) that are not necessarily always in agreement with the actual DSDs.

Displayed in Fig. 10 are scatter plots of observed brightness temperatures (10 and 19 GHz) vs.
brightness temperatures simulated based on the two types of hydrometeor content estimates, namely,
the combined retrieval and the 2A25 estimates. The differences between the simulated temperatures
and observations are reduced in the combined retrieval case, especially at the 10 GHz (about 20%
reduction in RMSD). The 19 GHz combined estimates also show smaller deviations (about 9%
RMSD), although the 19 GHz irformation is not used in the retrieval. This suggests that the
improvement in the 10 GHz temperature retrieval is not just a consequence of the minimization
associated with the technique but encompasses an improvement at the level of retrieved hydrometeor
contents.

Other cases we investigated gave similar results. That is, the combined precipitation estimates
are higher than the 2A25 estimates by about 10% to 15% and the agreement between the retrieved

PIAs and SRT PIAs is similar tc that between the 2A25 PIAs and SRT PIAs. Also, the improvement
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in the 10 GHz temperature predic tion translates to a somewhat smaller improvement in the 19 GHz
temperature prediction. However, it is premature to state whether the application of the combined
technique to TRMM data will consistently yield larger precipitation estimates. Considerably larger
data sets are needed to address this issue. Moreover, the consistency of radiative transfer calculations
with real observations should be more comprehensively investi gated, and the retrieved variables must

be evaluated with respect to inde pendent observations, e.g. ground radar observations, disdrometer

data, etc..

6. Conclusions

A method for estimating precipitation profiles from multifrequency, multiresolution, active and
passive microwave observations. is formulated and investigated in this paper. The method is based on
physical models that simulate, starting from active observations and a set of free parameters, the
passive observations. The free parameters are determined such that an agreement between simulated
and observed variables as well us agreement between retrieved and expected properties is achieved.
The method is tested using synthetic and airborne data and an illustration regarding its possible
application to satellite data is provided.

The synthetic retrieval ¢ xperiment uses cloud resolving model data to generate passive and
active observations characterized by TRMM instruments’ resolutions and frequencies. Retrievals are
performed and analyzed. Results show that the inclusion of passive information in retrievals may
reduce the uncertainties in PIA estimates. Improvements in PIA estimates translate to improvements
in precipitation estimates. That is because the PIA estimates strongly influence the precipitation
retrieval not only through atter uation-corrected profiles of reflectivity but also through the

relationships used to relate the corrected profiles to precipitation. Even though the microwave sensor
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passive information is characterized by low resolution, it is nonetheless effective in mitigating errors in
SRT PIA estimates in some situations. When SRT PIA estimates are affected by purely random errors,
the passive information has little impact on precipitation retrievals. When these SRT PIA errors are
correlated on distances on the order of magnitude of the low-frequency channels’ resolutions, the
benefit of passive observations is evident.

The analysis of airborne data suggests that SRT PIA errors are not purely random but exhibit
some spatial correlation. To make the analysis consistent with the synthetic retrieval experiment and
relevant for satellite applications the airborne data are aggregated at the TRMM instruments’
resolutions. Retrievals show the technique’s ability to restore the radiometric information at the initial
(airborne instrument’s) resolution. The SRT information is not included in the retrieval (given its
information poor content at the EDOP’s frequency and the need for validation of retrieved variables)
but is used to evaluate the combrned retrieval PIA. Results indicate a good agreement of retrieved
PIAs with SRT PIAs. Although some artifacts in estimated parameters are apparent, refined and
additional parameterizations and additional constraints should help to eliminate these.

The technique’s applicat:on to TRMM data shows its feasibility when dealing with real satellite
observations. Although more detailed investigations are to be performed to reach definite conclusions,
the results are encouraging. Values of retrieved parameters are similar to those derived from the
TRMM PR algorithm in terms of some variables, while others are different. These differences may be
systematic and caused exclusively by the different information content used by the two algorithms and
the nonlinear relationships among the variables involved in retrievals. That is, the SRT PIA seem to
have a weaker influence on retrieved parameters in the TRMM PR algorithm than radiometric

information has in the combined technique. As a result, in this study the precipitation estimates from
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the combined retrieval are larger than those from the TRMM PR. Whether the combined retrievals
lead in general to larger estimates than the PR-only estimates remains to be investigated.

Future work must be done to analyze the technique’s utility and performance in satellite
applications. As already stated this implies applications to a large set of real TRMM observations and
comparison of the results with 225 products. Also data from field experiments should be included in
the analysis. These data are particularly useful because they may provide additional insights related to
the validity of different estimates such as the DSD intercept, the cloud water content, and the mixed
hydrometeor properties. For example, disdrometer data may characterize the range of expected DSD
parameters for given meteorological contexts. Ground radar data and kinematic retrievals could be
used to estimate the cloud water fields, while multiple frequency radar observations of mixed-phase
hydrometeors may better depict their structure. All these elements considered together may provide a
comprehensive analysis of the t¢ chnique formulated and preliminarily investigated in this study for the

purpose of microwave rain estimation applications.
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Figure 10 Combined retrieval from TRMM data for August 22, 1998. Observed vs. combined

algorithm and observed vs. 2A25-based brightness temperatures. Included are the 10 and

19 GHz brightness temperatures.
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RETRIEVAL OF PRECIPITATION PROFILES FROM MULTIRESOLUTION,
MULTIFREQUENCY, ACTIVE AND PASSIVE MICROWAVE OBSERVATIONS

Mircea Grecu, Emmanouil N. Anagnostou, and William S. Olson

Popular Summary

Few of the important questions regarding the understanding and prediction of earth
processes can be answered without reliable estimation of global precipitation. This is why for the
last five decades, since the emergence of appropriate technology, precipitation estimation at scales
on the order of hundred kilometers has been a constant topic of interest for scientists and engineers.
Ground instruments, given limitations in terms of area coverage, can provide only a limited portion
of the big picture concerning the precipitation that we need to analyze and visualize. In these
circumstances, considerable effort has been continuously devoted to the development and
application of technologies that allow precipitation monitoring from space. The physics principle
used to monitor the precipitation from space is simple: every object in the universe emits, absorbs
and scatters radiant energy. While humans cannot visually detect the radiation emitted, absorbed,
and scattered by raindrops or many other natural objects, they have devised instruments that can do
that. Such instruments, called radiometers, were placed on artificial satellites to measure various
portions of the energy emitted, absorbed and scattered by atmospheric particles (including
raindrops) and the Earth Surface. The Tropical Rainfall Measuring Mission (TRMM) satellite is
equipped with a radiometer called the TRMM Microwave Imager destined to provide observations
for precipitation estimation.

The challenges in precipitation estimation from TMI observations originate from the fact
that each individual observation gauges the energetic interaction of precipitation particles with
radiant energy in very large aimospheric volumes. These volumes correspond to cylinders
vertically extending from the earth surface to the top of the atmosphere and having the base of
hundred of squared kilometers. The distribution of precipitation particles as well as their sizes vary
considerably in these volumes, which makes difficult the determination of one-to-one relationships
between TMI observations and the precipitation amounts. Additional information, derived from
theoretical models and independent practical observations, is usually employed to develop
algorithms that provide such relationships. To facilitate the development of TMI precipitation
estimation algorithms, another instrument called the Precipitation Radar (PR) was devised and
placed on the TRMM satellite. The PR does not rely on natural sources of energy to detect the
presence of rain particle in its sampling volumes. Instead, it sends energy pulses and measures the
energy returned by particles in its observation volumes. The PR sampling volumes are
significantly smaller than TMI's and correspond to cylinders of 250 m height and approximately 5
km radius. Since the main back scatterers in these volumes are precipitation particles, the energy
returned and measured by the PR may be used to estimate the precipitation. Given its small
sampling volumes, the PR provides information considerably easier to translate to reliable
precipitation estimates.

Although the PR information is usually incorporated in TMI-based precipitation estimation
indirectly, through the refinement of the hypotheses and models supporting the estimation
algorithm, a direct use of PR observations in TMI algorithms is possible. Or, more generally,



methodologies for precipitation estimation from PR and TMI observations may be developed. This
study investigates such a methodology. The methodology is based on a procedure that adaptively
changes based on TMI observations some assumptions, 1.€. numerical values, in the PR estimation
algorithm.

The methodology is investigated using simulated data, and airborne and TRMM
observations. A numerical model able to simulate cloud and precipitation dynamics is used to
generate precipitation and other fields on which the TRMM observations depend. Other models
that quantitatively describe the interaction of precipitation particles with various sources of radiant
energy are used to synthesize TRMM-like observations. The combined methodology is applied to
the artificially generated data and the estimated precipitation fields are compared to those used in
the synthesis. Results show advantages of using the combined methodology. The airborne data are
provided by instruments that are similar in principle to those aboard TRMM, but different in terms
of the atmospheric volumes they sample. In this sense, the airborne radiometer and precipitation
radar provide significantly better resolution data. The airborne data are degraded to the satellite
data resolution and the combined methodology is applied to the low-resolution data. The analysis
of results indicates a good ability of the combined technique to use low-resolution information to
improve the precipitation estimates from high-resolution information. The methodology's
application to TRMM data reveals its feasibility in dealing with real satellite data.



